

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Writing OK Tests

We implement a specific subset of OK Tests that instructors
can write. It doesn’t have all the features that okpy has, but
tries to be compatible wherever possible.

An OK Test should be a valid python file that assigns a dictionary
to a global variable named test. Let’s explore this more with an
example.

Structure

test = {
 'name': 'some-test',
 'suites': [
 {
 'cases': [
 {
 'code': r"""
 >>> # This is a doctest!
 >>> len(some_variable) == 4
 True
 """
 },
 {
 'code': r"""
 >>> # This is another doctest.
 >>> # This will run if the previous doctest passed
 >>> some_variable == "yeah"
 True
 """
 }
]
 }
]
}

Name

Name of this series of tests that is shown to students when it passes / fails.

Suites

This should always be a list with a single item. The single item must
be a dictionary with the single key cases where the value is a list of
test cases.

Each test case is a dictionary, with one key code, and the value is
a test in doctest [https://docs.python.org/3.6/library/doctest.html] format.
There can be any number of test cases - these will be run sequentially until
one of them fails. If all the test cases pass, a grade of 1 is assigned
for this particular oktest.

Example

Lets’ walk through an example!

We want our students to find the total number of seconds in a decade &
assign it to the variable seconds_in_a_decade. We want to progressively
test this, offering clues wherever they had failed.

Here’s an ok test file, with 4 test cases:

test = {
 'name': '2.2',
 'suites': [
 {
 'cases': [
 {
 'code': r"""
 >>> # It looks like you didn't give anything the name
 >>> # seconds_in_a_decade. Maybe there's a typo?
 >>> 'seconds_in_a_decade' in vars()
 True
 """
 },
 {
 'code': r"""
 >>> # The number of seconds you computed is too low by at least
 >>> # a factor of 5.
 >>> # There are 10 years, some number of days in a year, some
 >>> # number of hours per day, minutes per hour, and seconds
 >>> # per minute. For example, this is almost right:
 >>> # seconds_in_a_decade = 10*365*24*60*60
 >>> seconds_in_a_decade > 60000000
 True
 """
 },
 {
 'code': r"""
 >>> # You're close! Perhaps you didn't account for leap years correctly.
 >>> # There were 2 leap years and 8 non-leap years in this period.
 >>> # Leap years have 366 days instead of 365.
 >>> 315360000 < seconds_in_a_decade < 331344000
 True
 """
 },
 {
 'code': r"""
 >>> seconds_in_a_decade == 315532800
 True
 """
 }
]
 }
]
}

This ok test is in a file called seconds.ok.

In a Jupyter Notebook, let’s try to perform this task!

First, we don’t define this variable at all, and grade ourselves.

[image: variable undefined]

The grader runs tests sequentially, and whenever a test fails a
summary about it is displayed. The very first test failed here,
so it is displayed - including the comments that act as hints.

[image: wrong seconds]

The second test has failed, and provides a hint too!

We now make an actual attempt at solving the problem, using the
hint.

[image: almost right]

Very close! There’s also a hint here about how we are wrong…

[image: right]

w00t! All of our tests have passed!

Using okgrade

	Write your tests in ok test format,
and distribute them the same way you distribute lab notebooks
to students.

	In the lab notebooks distributed to your students, import
the grade function on top:

from okgrade import grade

	At various points, insert grading cells, like:

grade('tests/q1.py')

This will run the tests in q1.py with the student’s
current environment, and provide interactive results.

Drop-in replacement for okpy

If you are currently using okpy in notebooks, you will
import it like:

from client.api.notebook import Notebook
ok = Notebook('test1.ok')
ok.auth() # Pops open an OAuth authentication link

And then your grading cells will look like:

_ = ok.grade('q1.py')

A small shim is provided so this interface will continue
to not error!

ok.auth and ok.submit are empty methods that do
nothing. ok.grade does the same thing as grade,
but also displays the output if run inside an IPython
environment, to mimic okpy’s behavior.

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_images/ok-example-1.png
grade('seconds.ok')

Test 2.2 1 failed!
Test code:

>>> # It looks like you didn't give anything the name
>>> # seconds_in_a_decade. Maybe there's a typo?
>>> 'seconds_in_a_decade' in vars()

True

Test result:
Trying:

'seconds_in_a_decade' in vars()
Expecting:

True
B T R e
*k
Line 4, in 2.2 1
Failed example:

'seconds_in_a_decade' in vars()
Expected:

True
Got:

False

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/ok-example-4.png
seconds_in_a_decade = (365*8 + 366*2) * 24 * 60 * 60
grade('seconds.ok')

All tests passed!

_static/ajax-loader.gif

_images/ok-example-2.png
seconds_in_a_decade = 0
grade('seconds.ok')

Test 2.2 2 failed!
Test code:

>>> # The number of seconds you computed is too low by at least
>>> # a factor of 5.

>>> # There are 10 years, some number of days in a year, some
>>> # number of hours per day, minutes per hour, and seconds
>>> # per minute. For example, this is almost right:

>>> # seconds_in_a_decade = 10¥365%24%*60%60

>>> seconds_in_a_decade > 60000000

True

Test result:
Trying:
seconds_in_a_decade > 60000000
Expecting:
True
B B B LR TR e

%

Line 8, in 2.2 2
Failed example:
seconds_in_a_decade > 60000000
Expected:
True
Got:
False

_images/ok-example-3.png
seconds_in_a_decade = 10*365*24*60*60
grade('seconds.ok')

Test 2.2 4 failed!
Test code:

>>> # You're close! Perhaps you didn't account for leap years correctly.
>>> # There were 2 leap years and 8 non-leap years in this period.

>>> # Leap years have 366 days instead of 365.

>>> 315360000 < seconds_in_a_decade < 331344000

True

Test result:
Trying:

315360000 < seconds_in_a_decade < 331344000
Expecting:

True
B T o T T e e
Line 5, in 2.2 4
Failed example:

315360000 < seconds_in_a_decade < 331344000
Expected:

True
Got:

False

